
e

PHYSICAL REVIEW E 68, 051104 ~2003!
Weak nonlinear surface-charging effects in electrolytic films
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~Received 23 October 2002; published 20 November 2003!

A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model
exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation
of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are
then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluc-
tuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer
model for a thin film with Stern layer of thicknessh. For this model we give expressions for the surface charge
s(L) and the disjoining pressurePd(L) and show their dependence on the parameters. The influence of image
charges naturally arises in the formalism, and we show that predictions depend strongly onh because of their
effects. In particular, we show that the surface charge vanishes as the film thicknessL→0. The fluctuation
terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is
well known to be negligible compared with the mean-field component for model electrolytic films with no
surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation
leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field
component even for large film thickness.

DOI: 10.1103/PhysRevE.68.051104 PACS number~s!: 05.20.2y, 68.15.1e, 52.25.Kn
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I. INTRODUCTION

Many situations in colloid, polymer, and interfacial sc
ence involve charged objects interacting in electrolyte so
tions. In the case of two interacting membranes or soap fi
one encounters the electric double layer. The mean-fi
theory of such experimental configurations is the Poiss
Boltzmann theory@1,2# for which a surface boundary cond
tion must be determined. For example, the surface charg
surface potential can be given, or a relation between the
face charge and surface potential may be specified. Su
relationship arises in a charge-regularized model where
surface-charging mechanism is derived from a microsco
description of the chemistry and geometry at the interfa
Charge-regularized models have the property that, owin
the thermodynamic nature of the charging mechanism,
surface charge changes as the distance between the two
faces varies. The variation of the surface charge with
intersurface distance will also change the effective inter
tion between the surfaces and consequently the disjoin
pressure. Within the film, the mean-field Poisson-Boltzma
theory is only sensitive to the electrostatic properties of
electrolyte; the chemistry and effective sizes of the ions
the system only enter into the description of the surfa
charging process. For example, experiment@3# shows that
the disjoining pressure increases with increasing hydra
radius of the counterions in ionic soap films. This effect c
be explained by the fact that as the counterion radius
creases the capacity for it to approach the surface and sc
the surface charge is reduced.

To take into account bulk surface tensions of electroly
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one must resort to a microscopic description of the physic
the interfaces. Depending on the nature of interface one m
have specific adsorption due to chemical effects which
be taken into account via the law of mass action@4–8# or at
a more statistical mechanical level by introducing an exter
potential at the surface which models the chemical liais
involved @9–11#. In addition, there are other forces whic
come into play which are not present in the stand
Poisson-Boltzmann approach. These are effects due to
tuations in the electromagnetic field which can be identifi
with van der Waals forces@12–14#. In bulk, the nonzero
frequency van der Waals forces have little effect on the st
ionic distributions since the relevant frequencies are too la
and their contributions can be decoupled from those of z
frequency. However, it was pointed out in Ref.@15# that near
interfaces the nonzero frequency van der Waals or disper
forces can be important and depend strongly on the pola
ability of the ions involved, and hence are ion specific. T
zero frequency van der Waals forces, which correspond
thermal fluctuations in the electrostatic field, do strongly
fluence ionic distributions and so do modify the surfa
charge. When there are spatial variations in the dielec
constant image charges arise@16#. In the field-theoretic ap-
proach adopted in this paper image charges and their eff
are naturally and systematically included by taking into a
count the fluctuations of the electrostatic field.

In this paper we use field-theoretic techniques to study
effects of nonlinear terms on the surface-charging mec
nism and the disjoining pressure while retaining the fre
field theory description for the bulk electrostatic fields. Th
corresponds to using linear Debye theory in the bulk w
fugacity m but with the fully interacting description of the
sources for the charging mechanism of the surfaces. The
fect of including nonlinear interactions in the bulk of the fil
will be addressed in a forthcoming paper. The model is
©2003 The American Physical Society04-1
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D. S. DEAN AND R. R. HORGAN PHYSICAL REVIEW E68, 051104 ~2003!
plied to a triple-layer thin film as an idealized model of t
surfaces where there is a Stern layer of thicknessh from
which all ions are excluded. Calculations are performed
one-loop order in perturbation theory and an important o
come is that this extension of calculations beyond mean-fi
theory allows us to use the model as a paradigm for
analysis of the roˆle of divergences which arise in the theor
There are three categories of divergence:~a! apparent ultra-
violet divergences which can be shown to cancel wh
physical renormalization conditions are imposed;~b! ultra-
violet divergences which are physical and are regulated
physical length scales which are typically the sizes of
ions involved; and~c! divergences associated with imag
charges induced by the dependence of the dielectric con
e on z, the coordinate normal to the film. These appear in
self-energy contributions near to the surface and are re
lated by the Stern layer thicknessh. Of these, we discuss~a!
and ~c! in this paper since it can be shown that divergen
of type ~b!, which must arise because the Sine-Gord
theory is not renormalizable in three dimensions, occur o
in graphs at three-loop order and higher. Because di
gences of type~c! are physical the charging mechanism fo
realistic film cannot place charges directly on the surfa
because this would correspond to settingh50. However, it
should be emphasized that the mean-field theory is not
gular ash→0, and we exploit this observation to set up t
mean-field solution about which the fields are expanded
that the effects of field fluctuations can be analyzed.

In Sec. II we describe the field theory model we use
this study and how it is applied to the triple-layer thin fil
system discussed above. In Sec. III we discuss the mean-
solution to the field theory for the thin film for which th
nonlinear interactions at the surface determine the so
terms in the mean-field equation. In Sec. IV we give a
tailed description of the effect of field fluctuations about t
mean-field solution using the Schro¨dinger kernel approach
developed in an earlier paper@24#. We give predictions for
the surface charges(L) and the disjoining pressurePd(L) as
a function of film thicknessL and show under reasonab
assumptions thats(L)→0 asL→0 and that the mean-field
prediction for the largeL tail of Pd(L) is modified by one-
loop corrections, which like the mean-field contribution al
decay as exp(2mL) for largeL, wherem is the Debye mass
In Sec. V we present a number of example graphs and
cuss their salient features. In particular, it is clear that
effects of image charges, which arise naturally and syst
atically in our formalism as terms in self-energies, are v
strong and that qualitative predictions depend sensitively
the value ofh, the thickness of the Stern layer. This demo
strates that a realistic model for the structure of the surfa
and the width of the Stern layer in particular, is necessary
a quantitative study. We also present some conclusion
this section.

II. MODEL

We consider an idealized model of a thin film made w
nonionic soap adapted to the experimental setup use
measure the disjoining pressure as a function of the
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thickness@3,10,17–19#. The film shown in Fig. 1 consists o
two parallel surfaces of areaA, the interior of which is filled
with a monovalent electrolyte solution such as NaCl in wa
with bulk dielectric constante. The exterior of the film is a
dielectric medium of dielectric constante0, for example, air.
The perpendicular distance between the two surfaces is
noted byL12h. The region of thicknessh is the Stern layer
from which the largest ions in the system are excluded, anh
can be taken to be the radius of the largest ion type in
system, which is here chosen to be the anion~in most physi-
cal systems it is the cation with the largest radius due
hydration!. If the radius of the cation in solution ish8 and
h8,h, then the cation is excluded from a region of widthh8
from the surface but can be present in the region@2(h
2h8),0# where there are no anions, thus leading to an eff
tive surface charge in that region. Strictly speaking, just o
side the film is the surfactant layer which in general w
have a different dielectric constant to that of the exterior a
the aqueous interior. Here for simplicity the presence of
nonionic surfactant is neglected. A version of this model w
a single surface plus bulk is commonly used to model
surface properties of electrolyte solutions@15,20–22#. In ex-
periments the thicknessL of the film may be varied by ap
plying an external pressure in the cell containing the film a
its bulk.

The grand partition function for this model system may
expressed as a functional integral~the functional integral ap-
proach to slab geometries was introduced in Ref.@23#!

J5E d@f#exp~S@f#!, ~1!

where

h L h

h’h’

+

AIR AIRSALT SOLUTION

Debye
Mass 

Dielectric
Constant

z 0 L

ε ε ε ε ε ε ε0 0

0 0m0 0

FIG. 1. Cross section through a model soap film. The distanc
closest approach of the ions to the surfaces~at z50 andz5L) is
the effective radius of the ionic species in solution. The dielec
constants and Debye masses as a function of the distance pe
dicular to the film surface, i.e., as a function of the position on
z axis are also shown.
4-2
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WEAK NONLINEAR SURFACE-CHARGING EFFECTS IN . . . PHYSICAL REVIEW E68, 051104 ~2003!
S@f#52
1

2E(T1L12h)3A
be~x!~“f!2dx

12mE
L3A

cos~bef!dx

1m1* E
L3A

@d~z!1d~L2z!#exp~ ibef!dx, ~2!

wheree is the electron charge,A is the area of the film, and
b51/kBT. The fugacities of the anions and cations are tak
to be equal and denoted bym, and for a monovalent electro
lyte their densities in the bulk are also equal and are den
by r. The total length in thez direction perpendicular to the
film surfaces isT1L12h, whereT denotes the total length
external to the film. In the regionzP@2h,L1h# the dielec-
tric constant, which is a function only ofz, is given by
e(z)5e and outside the filme(z)5e0.

The above field-theoretical formulation can be obtain
directly from quantum electrodynamics@24# by retaining just
the electrostatic potential field in the QED Lagrangian a
coupling it to the distribution of ion charges. Alternatively,
can be obtained by standard field-theory techniques base
the Hubbard-Stratonovich transformation for a monoval
Coulomb gas. The formulation takes into account both
Coulomb interactions between the ions and the zero
quency van der Waals forces due to fluctuations in the e
trostatic potential@24#. These zero frequency van der Waa
forces are particularly relevant when there are variations
the dielectric constants of the system since they naturally
systematically include the effects of image charges. Thi
especially the case for aqueous soap films in air wh
e/e0'80. The density operators for the cations and ani
can be shown to be

r6~x!5m exp@6 iebf~x!#. ~3!

The last term in Eq.~2! represents a highly localized affinit
for the cations to be at the surfacesz50 andz5L of the
film, and is responsible for the generation of a surfa
charge. There are various mechanisms leading to affin
for ionic species at interfaces, ranging from chemical affin
to steric and entropic effects. Here this term arises in
following approximation. Since there can be cations in
region @2(h2h8),0# and the corresponding region@L,L
1(h2h8)#, there is, in addition to the first two terms of th
action Eq.~2!, a surface term

S5mE
[ 2(h2h8),0]3A

exp~ ibef!dx

1mE
[L,L1(h2h8)] 3A

exp~ ibef!dx. ~4!

This is the integral of the density operator given by Eq.~3!
for the cations over the regions@2(h2h8),0# and @L,L
1(h2h8)#. These are the regions in the Stern layers wh
may be occupied by the cations but from which the anio
are excluded. Ifh2h8! l D , where l D is the Debye length
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which characterizes the scale of the electrostatic interacti
then we can approximateS by

S5m~h2h8!E
L3A

d~z!exp~ ibef!dx

1m~h2h8!E
L3A

d~z2L !exp~ ibef!dx. ~5!

Comparing with the formula in Eq.~2! we see thatm1*
5m(h2h8). In general actions of the type of Eq.~2! can be
used to describe various surface-charging mechanisms
the proviso that the region where the surface charge is lo
ized has a width much smaller than the Debye lengthl D .
While this description acts as a motivation for the model it
clear that, in general, there will be specific adsorption for
different species near the air/water interface. To model a s
cific adsorption for the cations in the surface region@2(h
2h8),0# we take a surface cation fugacityms in this region
which is greater than the bulk cation fugacitym. On shrink-
ing the surface region to zero one would then havem1*
5ms(h2h8). In general, we will have thatm1* 5mr , where
r is a parameter having the dimensions of length. There
some evidence for specific absorption of certain ionic spe
at seemingly chemically neutral interfaces; the famous
controversial Jones-Ray dip@25# in the surface tension o
weak electrolyte solutions~with interfaces with air! can be
explained by invoking a specific adsorption of anions at
interface @26#, although the basic surface exclusion mod
introduced in Ref.@20# and used here cannot explain neg
tive excess surface tensions. Recent experimental evid
points toward a specific adsorption of hydroxide ions at a
water and oil/water interfaces@22#. In what follows we treat
m1* as an independent variable to account for the more c
plex charging mechanisms which can occur at the interfa

It is important to note that the fugacitym ~and hence
m* 5mr ) is determined by the values of the physical bu
densityr,

r5m^cosbef&,

where the brackets stand for averaging over the bulk pa
tion function. In mean-field theory or at the zero-loop lev
this implies r5m, but this is not true in general and th
relationship must be calculated taking field interactions i
account. In particular, it is important to note that final resu
must be expressed in terms ofr which is a physically mea-
surable quantity and not in terms ofm which is a parameter
in the action tuned to achieve the value ofr required. In
order to calculate quantities to a given loop order we m
expandm as a series inr using Eq.~2! to the same order to
obtain a consistent final result.

In Ref. @24# the field theory with the action of Eq.~2! was
analyzed in the weak-coupling or Debye-Hu¨ckel limit which
is a Gaussian approximation where the action is expande
second order in the fieldf. This amounts to the assumptio
that the mean-field densities of cations and anions throu
out the film are small enough so that 8pr(z) l B

3,1, wherel B

is the Bjerrum lengthl B5e2b/4pe. Another approach is to
4-3
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D. S. DEAN AND R. R. HORGAN PHYSICAL REVIEW E68, 051104 ~2003!
solve the full nonlinear mean-field equations and then ca
late the one-loop correction which gives the effect of fie
fluctuations about this mean-field solution@28,29#. In Ref.
@28# the resulting mean-field solution in the case of fix
surface charge was ingeniously expressed in terms of sp
functions which allowed an analytic calculation of the on
loop correction. In our case, however, the fact that the s
face charge must be computed self-consistently leads to
ditional complications and we take a different approach.
assume that the Gaussian approximation is valid inside
film but not at the surface where, because of the increa
charge density, the electrostatic interactions will be stron
and we retain the full nonlinear surface operators. The res
ing theory can be analyzed as before@24# but with an effec-
tive L-dependent surface source for the field. The theor
accurate to the same order in perturbation theory as be
but, in addition, now includes nonperturbative surface
fects. The corresponding Debye-Hu¨ckel action with nonlin-
ear surface terms is

S* @f#52
1

2E(T1L12h)3A
be~z!~“f!2dx

2
1

2EL3A
bem2f2dx1m1* E

L3A
@d~z!

1d~L2z!#exp~ ibef!dx12mAL, ~6!

wherem(r)5A8pr l B[1/l D is the bulk Debye mass,l D is
the Debye length, andl B is the Bjerrum length defined
above.

Note that the term neglected in passing from the full
tion, Eq. ~2!, to Eq. ~6! to the order off4 is

DS* 5E
L3A

Fbe@m2~r!/22m2~m!/2#f21
2me4b4f4

4! Gdx.

~7!

Using the effective actionS* as a starting point for a pertur
bation theory it can be shown that the dimensionless per
bative parameter isg5mlB . It can also be shown that in th
bulk the termDS* only contributes to observables atO(g2),
and we thus neglect it in our current one-loop analysis al
with the higher-order terms in the expansion of the cosin

From the discussion above, the weak-coupling limit c
responds tog5mlB,1, and the Gaussian approximatio
will be valid throughout the film so long as the local
effective mean-field Debye massm„r(z)…5A8pr(z) l B does
not become so large that this weak coupling condition
violated. This condition is 8pr(z) l B

3,1 as stated earlier. We
note that sincer(z).rbulk , this necessarily requires tha
8prbulkl B

3,1.
Proceeding with the approximation scheme descri

above we have the expression

J'E d@f#exp~S* @f#! ~8!
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for the grand partition function. The mean-field Poisso
Boltzmann equation is obtained from the saddle point of
actionS* :

d

df~x!
S* ufc

50, ~9!

with m substituted byr in the final mean-field results de
duced from the solution sincem5r at the zero-loop order
We should emphasize that, as already discussed above,
calculating to a given loop order, the mean-field expressi
should be evaluated withm expressed as a series inr deter-
mined by Eq.~2! to the same order. This is the usual proc
dure for perturbative loop expansions in field theory and
sures the removal of nonphysical divergences in the resu

Taking into account the Gaussian fluctuations about
mean-field solution gives the perturbative correction to o
loop for which we have

J'exp~S* @fc# !E d@f8#

3expS 1

2E dxdy
d2S*

df~x!df~y!
Ufc

f8~x!f8~y! D .

~10!

All other terms are treated as interactions to be analyzed
perturbation theory and yield corrections at two-loop a
higher order.

The grand-potential per unit area of filmJ can be sepa-
rated into a mean-field contribution plus the zero frequen
van der Waals contribution coming from the fluctuations. W
write

J5JMF1JvdW, ~11!

where

JMF52
1

Ab
S@fc# ~12!

and

JvdW5
1

2Ab
Tr lnS 2

d2S*

df~x!df~y!
U

fc

D . ~13!

The stability of the mean-field solution and validity of th
one-loop approximation is ensured if the Hessian opera
H52d2S* /df(x)df(y)ufc

is positive definite.

III. MEAN-FIELD THEORY

The mean-field equation is obtained as usual by look
for an imaginary solution to Eq.~9!, fc5 ic, wherec is real
and corresponds to the mean-field electrostatic potential@24#.
The resulting equation forc is

b“•e“c2m2bec1m1* be@d~z!1d~L2z!#exp~2bec!

50 ~14!
4-4
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WEAK NONLINEAR SURFACE-CHARGING EFFECTS IN . . . PHYSICAL REVIEW E68, 051104 ~2003!
within the film, and outside the film we have

b“•e0“c50. ~15!

This mean-field equation has the form of a standard line
ized Poisson-Boltzmann equation but with nonlinear bou
ary terms.

An important fact to note is that in mean-field theory t
limit h,h8→0 discussed in Sec. II and implicit in Eq.~14! is
nonsingular. This is because image charge contributions
first seen in the one-loop self-energies contributions wh
arise from an analysis of the field fluctuations about the
lution to the mean-field equations~14! and ~15!. These con-
tributions are discussed in detail in the following section.

The solution forc is by symmetry only dependent onz
and symmetric about the midplane of the film atz5L/2, and
so we choose the solutionc(z)5C(L)cosh@m(z2L/2)# in-
side the film. Outside the film Eq.~15! gives dc/dz50,
which is the condition of electroneutrality of the mean-fie
solution within the film. Integrating the mean-field equati
betweenz502 andz501, and using the condition of elec
troneutrality, we find

e
dc

dz
uz50152em1* exp@2bec~0!#. ~16!

Defining D(L)5C(L)be cosh(mL/2) gives the nonlinear
self-consistent equation determiningD to be

D~L !5a cothS mL

2 Dexp@2D~L !#, ~17!

where a5mm1* /2m5mr/2 is dimensionless. In the Ster
layer model a5m(h2h8)/25(h2h8)/2l D . As stated in
Sec. II it is whenl D@(h2h8) that the formulation in terms
of a surface charge is valid. In the study of this particu
model we havea!1, which also implies small surfac
charges compatible with the use of the quadratic approxi
tion within the film. Then Eq.~17! may be formally solved as
a power series ina coth(mL/2) using standard series inve
sion techniques from complex analysis. We find that

D~L !5a cothS mL

2 D (
n50

`

~21!nFa cothS mL

2 D Gn ~n11!n21

n!
.

~18!

It is useful for what follows to define the running variable

a8~L !5D~L !tanhS mL

2 D5
mm1* exp@2bec~0!#

2m
.

~19!

From Eq.~18! we then have

a8~L !5a (
n50

`

~21!nFa cothS mL

2 D Gn~n11!n21

n!
. ~20!

We can regarda8(L) as a variable encoding the effectiv
fugacity which controls the surface-charging mechanis
Many observable quantities are most appropriately expre
05110
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in terms ofa8(L) rather thana. This is a common phenom
enon in quantum field theory where the physical expans
parameter is a running coupling which is an explicit functi
of a physical scale appropriate to the system under study.
example, in particle physics the scale will be the center-
mass energy of a scattering process and in critical phen
ena it is the diverging correlation length of the system. Se
expansions in the effective, running, parameter are m
stable and convergent than in the original bare param
which parametrizes the action of the theory. Here, as in o
cases, the running couplinga8(L) is expressed as an infinit
series in the corresponding bare parametera. We can imme-
diately see from Eq.~20! why a8(L) is a better expansion
parameter. AsL→`, a8 takes its bulk surface valuea*
5 limL→`a8(L). As mentioned previously we are using
Gaussian field theory inside the film and so the mechan
generating the surface charge cannot be taken to be
strong, implying thata!1, which givesa*'a. As L de-
creasesa8(L) decreases. However, since the expansion
Eq. ~20! is in a coth(mL/2), the nonlinear terms in this serie
must be taken into account when varyingL. Indeed, for small
L one can show thata8(L);2mL ln(L)/2, which tends to
zero asL tends to zero.

We note that in general surface-charge-regulated mo
@7#, even if there is an exact solution to the Poisso
Boltzmann equation~or its linearized form! in the bulk, one
must determine the surface potential via a transcende
equation relating the surface charge to the surface poten
In general, this equation must be solved numerically by
eration@4# or by linearizing the boundary equation@5#. For-
tunately in the case studied here we have an explicit se
solution to the boundary equation. The disjoining pressure
the film Pd(L) is the difference between the film and bu
pressures. In the grand canonical ensemble

Pd~L !5P~L !2Pbulk52
]J~L !

]L
1 lim

L→`

J~L !/L, ~21!

where J is the film grand-potential per unit area. We ca
decompose the disjoining pressure into a contribution co
ing from the mean-field solution and a contribution comi
from the field fluctuations which corresponds to the ze
frequency van der Waals interaction,

Pd
MF~L !52

]JMF~L !

]L
1 lim

L→`

JMF~L !/L, ~22!

Pd
vdW~L !52

]JvdW~L !

]L
1 lim

L→`

JvdW~L !/L. ~23!

After some straightforward but laborios algebra we find th
4-5



oo

t

na
ui
n
o
r-
-
,

er

tant

ure

o
ent
e.

ce

at
ion
-
are

ion

ian

ily

eld
a-

-

D. S. DEAN AND R. R. HORGAN PHYSICAL REVIEW E68, 051104 ~2003!
Pd
MF~L !5mkBT

D2~L !

cosh2S mL

2 D
5rkBT

D2~L !

cosh2S mL

2 D , ~24!

where the last line above is the mean-field result withm
evaluated at zero-loop order for consistency. The zero-l
mean-field value of the density within the film is given by

rMF~x!52r cosh@ebc~x!#, ~25!

and in the linearized theory within the film this becomes

rMF~x!52r1re2b2c~x!2. ~26!

At the midplanez5L/2 of the film one has

rMFS z5
L

2D2rbulk5r
D2~L !

cosh2S mL

2 D . ~27!

The midplane pressure formula@1,2#, for Poisson-Boltzmann
theories with fixed surface charges or potentials, relates
disjoining pressure to the midplane mean-field density by

Pd
MF5kBTFrMFS z5

L

2D2rbulkG . ~28!

In fact, in theories of the type considered here with exter
potentials at or near the film surface, one can show q
generally that the midplane formula holds generically as lo
as these external potentials are zero in a finite interval c
taining the midplanez5L/2 ~and hence when the two su
face potentials do not overlap!. One can see directly, com
paring Eqs.~24! and~28! with the linearized approximation
Eq. ~27!, that the midplane formula is respected here.

The mean-field, zero-loop surface chargesMF(L) may be
written in terms ofa8(L) defined in Eq.~19!. We have

sMF~L !5em*
]

]m*
bJMF , ~29!

which gives

sMF~L !5
2rea8~L !

m
. ~30!

As remarked in the preceding section it is clear thata8(L) is
the appropriate expansion parameter for physical obs
ables.

The mean-field disjoining pressure in terms ofa8(L) is

Pd
MF5rkBT

a82~L !

sinh2S mL

2 D , ~31!
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which, in terms of the mean-field surface charge, reads

Pd
MF5

sMF
2 ~L !

2e sinh2S mL

2 D . ~32!

For the linearized Poisson-Boltzmann equation with cons
surface chargesc one finds@8,27#

Pd
MF5

sc
2

2e sinh2S mL

2 D . ~33!

Hence, at the mean-field level, fitting the disjoining press
at each value ofL with anL-dependentsc will reproduce the
behavior ofsMF(L) in the current theory. This result is als
true for full nonlinear mean-field theory and is not depend
on the quadratic field approximation in the bulk used her

IV. FLUCTUATION EFFECTS

In this section we give the expression for the surfa
charges(L) and the disjoining pressurePd(L) correct to
one loop and shall explicitly explain the roˆle of divergences.
We demonstrate that the ultraviolet divergences arising
one loop cancel when the physical renormalization condit
determining the densityr is imposed, and that the diver
gences ash→0 appearing in surface self-energy graphs
physical and correspond to image charge effects.

Evaluating the fluctuations about our mean-field solut
yields

1

2E dxdy
d2SDH

df8~x!df8~y!
U

fc

f8~x!f8~y!

52
1

2E(T1L)3A
be~z!~“f8!2dx2

1

2EL3A
bem2f82dx

2
1

2
bema8~L !E

L3A
@d~z!1d~L2z!#f82dx, ~34!

wherea8(L) is defined in Eq.~19!.
The main difference in Eq.~34! from the pure Gaussian

theory of Ref.@24# is that the surface terma8(L) is now a
function of the film thickness, whereas in the pure Gauss
theory it is a constant. The fluctuation term, Eq.~34!, may be
evaluated using functional techniques@14,28,30–32# as it is
a functional determinant, or by path integral techniques@24#.
In the calculation of this functional determinant, it is eas
verified that the eigenvalues of the Hessian operatorH are
indeed positive, thus ensuring the stability of the mean-fi
solution and hence the validity of the one-loop approxim
tion.

Using the results of Ref.@24# we find that the terms de
pending explicitly ona8 and L that will contribute to the
disjoining pressure and the surface charge are
4-6
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bJvdW~L,a8!

5bJbulk
vdWL1

m2

2pE dkk ln@B~km!k1a8~L !1Ak211#

1
m2

4pE dkk lnF12S B~km!k1a8~L !2Ak211

B~km!k1a8~L !1Ak211
D 2

3exp~22LmAk211!G , ~35!

where

B~p!5
11D exp~22ph!

12D exp~22ph!
, ~36!

with D5(e02e)/(e01e). The termbJbulk
vdW in Eq. ~35! is the

van der Waals contribution to the bulk grand-potential p
unit volume and is given by

bJbulk
vdW5

m2

4pE dkk~Ak2112k!. ~37!

The mean-field contribution to the bulk grand-potent
per unit volume is simplybJbulk

MF 522m since the mean-field
solution in the bulk is justc50; there are no surfaces to s
up a mean-field potential. At this point we may not replacem
by r because we need to work to one loop for consisten
The total bulk grand-potential per unit volume is thus giv
by

bJbulk522m1
m2

4pE dkk~Ak2112k!

522m2
m3

12p
1

1

8p
Lm21OS m4

L D
522m2g

2r

3 S 12
3L

2mD , ~38!

where L is a momentum space cutoff corresponding to
short distance cutoffa;1/L, and g5m3/8pr5mlB . We
see that indeed the expansion is in the dimensionless
pling g as asserted in Sec. II. The bulk density of electrol
is given by

2r52m
]

]m
bJbulk52m1

m3

8p
2

1

8p
Lm2,

which can be written as

m5Zr, Z512
g

2 S 12
L

mD .

From its definition in Sec. II we then also have, to this ord
in g, thatm1* 5Zr1* .

Substituting this result into Eq.~38! gives the well-known
Debye expression for the bulk pressure
05110
r
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y.
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r

bPbulk52bJbulk52r2
m3

24p
. ~39!

In addition, the above results can be used to show that
term DS* , defined by Eq.~7! and which is neglected in ou
theory, isO(g2) in the bulk as stated previously.

In the field-theoretic formulation used here the surfa
charge~on one surface! per unit area,s, is given by

s5em1* ^exp@ iebf~z50!#&. ~40!

From this expression it is clear thats>0 since we take
em* .0 in what follows. However, for the purposes of th
paper and to the order of accuracy of the present treatm
we expand this operator to quadratic order and use the
proximation

s5em1* exp@2ebc~z50!#^11 iebf8~z50!

2 1
2 e2b2f82~z50!&, ~41!

where the averagê•••& in the above equation is over th
fluctuationsf8. Since the one-loop action inf8 is quadratic,
it follows that our result fors in this approximation will be
the first terms in an exponential series which can be imm
diately reexponentiated to give a result that is manifes
non-negative. Where this approximation breaks down
then be easily inferred from this fact and we shall remark
this later in the section. However, the aim of this paper is
demonstrate how observables can be calculated consist
to one loop and how all divergences can be accounted
and their role understood; this approximation is sufficient
this objective.

A consequence of the one-loop action inf8 being of qua-
dratic form is that the average of the term linear inf8 in Eq.
~41! is zero and we may then write

s5
2mea8~L !

m
2

ea8~L !

2

]bJvdW

]a8~L !
ua8501O~a82!,

~42!

where we have used thata5mm1* /2m and where we have
kept only the leading-order behavior of the surface charg
a8. We note that the first term in Eq.~42! is simply the
mean-field contributionsMF . The next order terms can b
calculated and are finite though one needs to eliminate
tain artificial divergences@34#. The formula, Eq.~42!, gives
the surface charge in terms of the conjugate variablea8. We
note that the first term on the right-hand side of Eq.~42! is
simply the mean-field contribution to the surface chargesMF
but we do not replacem by r sincem must be expanded in
terms ofr to one-loop order for consistency. ToO(a8) we
obtain
4-7
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2ea8~L ! S m2

m3E kdk
1

m3E kdk
D2~k,m!Ak211 D 1O~a82!,
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m 8p D1~k,m! 4p D1~k,m!@D1~k,m!2exp~2LmAk211!2D2~k,m!2#
~43!
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where D6(k,m)5kB(km)6Ak211. There is, however, a
divergence in the first integral term in Eq.~43!. This term
corresponds to the van der Waals contribution to the cha
of a bulk surface,sbulk5 limL→`s. This divergence can be
regularized by choosing the fugacitym to give the desired
bulk electrolyte densityr correct at one-loop order~as al-
luded to previously!. We define

G5E kdkS 1

kB~km!1Ak211
2

1

2kD ~44!

and then

sbulk5
2ea*

m S m2
m3

8p
G2

m2L

16p D , ~45!

whereL is the ultraviolet cutoff introduced in the bulk ca
culation above. Note that for weak charginga*;a. Hence in
terms of the physical variabler we obtain the divergence
free formula forsbulk ,

sbulk5
2ea*

m S r2
m3

16p
2

m3

8p
G D . ~46!

We remark here that in the caseDÞ0, if the Stern layer
thicknessh is taken to zero, then the termG in Eq. ~46!
diverges. It is clear however that one cannot have a sur
charge exactly at the interface between two media of dif
ent dielectric constants due to the presence of arbitra
close image charges which would lead to an infinite ene
cost. The divergence inh as h→0 in Eq. ~46! is thus a
physical divergence and any model using a surface ch
must place this surface charge away from a discontinuity
the dielectric constant,e. As emphasized in Sec. III, there
no divergence ash→0 in mean-field theory and so the resu
that no charge can be situated precisely at the surface ca
be deduced from the mean-field solution but rather ar
through well-understood image charge effects first arising
one-loop order. Of course, if the change ine is not abrupt but
takes a smooth functional form, then this statement will
moderated accordingly. However, in such more complica
and perhaps more realistic circumstances, the potential
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ergy related to image charge effects is still calculable in
formalism from self-energy terms evaluated in the reg
wheree varies strongly. WhenD50 no such divergence is
present andB(km)51 leading to the simple formula

sbulk5S 12
g

6DsMF~`!. ~47!

We notice that from Eq.~39! that, to this order, this equatio
may be written as

sbulk5
bPbulkea*

m
. ~48!

In the absence of dielectric discontinuities~when e
5e0), from Eq. ~47! we see that the effect of electrostat
interactions is to reduce the surface charge from the valu
would have had without interactions. This is because
excess anions left in the bulk pull the cationic surface cha
into the bulk. The case whereD.0 ~i.e., e0.e) leads to
B(km)>1 for all k and, examining the integrand in the fo
mula definingG, we find thatG,0 and hence that positiveD
increases the surface charge above that of the caseD50. This
is to be expected physically as the image charges in this
attract the ions toward the medium of higher dielectric co
stant @16#. In the case wherehm!1 we may evaluate the
integral definingG since the leading divergence ashm→0
comes from the largek integration. We find

sbulk5S 12
g

6
1

gD

4mhDsMF~`!. ~49!

Again, we see that forD.0 ~D,0! there is an enhancemen
~reduction! of the surface charge. This enhancement~reduc-
tion! can be physically attributed to the presence of ima
charges.

Finally theL dependence of the surface charge atO(a8)
is given by

s~L !5sMF~L !@11gS~mL,mh!#, ~50!

where
S~mL,mh!52
1

2
2G12E kdk

D2~k,m!Ak211

D1~k,m!@D1~k,m!2 exp~2LmAk211!2D2~k,m!2#
, ~51!
4-8
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WEAK NONLINEAR SURFACE-CHARGING EFFECTS IN . . . PHYSICAL REVIEW E68, 051104 ~2003!
where D6(k,m)5kB(km)6Ak211. As remarked earlier
the surface charge must be non-negative because in
model the expectation value of the charge operator give
Eq. ~40! is the exponential of a function of (r,L,h). Our
approximation has considered so far the quadratic expan
of this operator but we can easily now infer the full exp
nential result from these last two equations to be

s~L !5sMF~L !egS(mL,mh). ~52!

To replace our result by the exponentiated expression i
perform a selective resummation of higher-order graphs
the expansion fors which respects the physical constrai
that s is non-negative. This exponentiation is also clea
consistent at the level of accuracy of the present one-l
approach as the terms introduced are of orderg2. Indeed, if
one did not use the expansion of the exponential as don
Eq. ~41!, but rather calculated the expectation value ofs
using the Gaussian form of the action of the fluctuationsf8,
we would clearly recover the same formula. The result in
~49! can be similarly exponentiated. We remark that corr
tions from interactions within the film bulk,which have bee
omitted in this model, will give a multiplicative factor of th
form 11ag21•••.

Becausea8(L)→0 as L→0, we find thatsMF , and
hence the surface charges, vanishes as the film become
thin. This is a physical result as clearly two surface char
lying on each other will have an infinite electrostatic ener
and this situation will be thermodynamically suppress
This vanishing of the surface charge asL→0 is not picked
up by a purely Gaussian theory@24#.

As previously stated the total disjoining pressure is co
posed of a mean-field contribution and a contribution com
from the fluctuations. We find that the total of these tw
terms gives

Pd~L !5
sMF

2 ~L !

2e sinh2S mL

2 D S 112g
S~mL,mh!

F11a8~L !cothS mL

2 D G D
24grkBTS E dkkAk211D f 2~k!

12 f 2~k!
, ~53!

where

f ~k!5
kB~km!1a8~L !2Ak211

kB~km!1a8~L !1Ak211
exp~2LmAk211!.

~54!

In order to simplify the calculation in terms of quantitie
already computed we have simply used the decompositi

]J

]L
5S ]J

]L D
a8

1
]a8

]L

]J

]a8
, ~55!

where first partial derivative is computed at constanta8. The
second term may be written in terms of the mean field a
one-loop surface chargessMF ands using Eq.~42!. Also in
the derivation of this formula the divergences which arise
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intermediate stages of the calculation can, as in the cas
the surface charge, be shown to cancel in the final result.
reader should note that we have used the smalla8 expansion
in Eq. ~53! as with the surface-charge calculation. Howev
the terma8(L)coth(mL/2) cannot be expanded for smallL as
it diverges asL→0.

The first term in Eq.~53! is simply the mean-field contri-
bution toPd , the second~in the same bracket! is the contri-
bution coming from the dependence ofJvdW on L via theL
dependence ofa8. The last term is a form of screened ze
frequency van der Waals contribution. In the absence of e
trolyte we find that this last term gives a 1/L3 Casimir attrac-
tion across the film. This can be seen by making the cha
of variablesp5km in the expression forf in Eq. ~54! and
then taking the limitm→0. Clearly whenm50 we see that
a is also zero since there is no surface charging when the
no electrolyte, and the only length scale in the system isL.

In the presence of electrolyte this interaction is scree
@14# and decays exponentially as exp(22mL), which is twice
as quick as the mean-field contribution to the disjoining pr
sure which decays as exp(2mL) for largeL. However in the
theory presented here, the fluctuation effects contribute
additional term which decays also as exp(2mL) and hence
the fluctuations modify the long distance behavior ofPd . We
note that in theories with a fixed surface charge, the lo
range component of the disjoining pressure is not altere
one-loop level. The renormalization of the long-range co
ponent of the disjoining pressure, as demonstrated her
specific to charge-regularized models. The strength and
of this long-range modification ofPd is controlled by
gS(mL,mh), defined in Eq.~51!, which can be interpreted
as the deviation of ln@s(L)# from its mean-field value. If the
fluctuation effects enhance~reduce! the surface charge, the
the long-range value ofPd is increased~decreased! from its
mean-field value. The Casimir term is, however, always
tractive.

It should be remarked at this stage that to this ord
O(g), there will beL-dependent contributions from the non
Gaussian interaction term inf84. These contributions can b
shown to vanish asL→` but their effect for finiteL must be
calculated. However, such a calculation requires the app
tus for the general perturbation theory which we shall pres
in a forthcoming paper@34#.

V. DISCUSSION AND CONCLUSION

We have systematically developed a theory for a thin fi
with a full nonlinear surface-charging mechanism while
taining the free-field theory description for the bulk electr
static fields. This corresponds to using linear Debye theor
the bulk with fugacitym but with the fully interacting de-
scription of the sources for the charging mechanism of
surfaces. We have applied the theory to a model consistin
a triple-layer system, shown in Fig. 1, in which there is a
sorption of cations onto the surface modeled by a surf
fugacity m1* and encoded in the dimensionless surface
sorption strength parametera5mm1* /2m. At the surface
there is a Stern layer of thicknessh8 from which all ions are
excluded, and the film is of thicknessL. The dielectric con-
4-9
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D. S. DEAN AND R. R. HORGAN PHYSICAL REVIEW E68, 051104 ~2003!
stants in what follows will be those for air/water system
where e;80e0 in the film and e0 outside the film. This
model for a real surface is too simple but it encodes
important feature that the thermodynamic properties of
film are very strongly dependent on the detailed nature of
surface and its properties. This is due to two features:
charging mechanism which allows the surface charge to
main in equilibrium with the interior charges and the effe
of image charges due to the discontinuity in the dielec
constant at the surface. First, we determine the mean-
solution fc(z) using the nonlinear surface operators as
source and then we use the Schro¨dinger kernel approach to
calculate the partition function as an expansion ina and g
5mlB , wherel B is the Bjerrum length. Much of the detail
of this approach have been discussed in an earlier paper@24#.
In this paper, we concentrate on the effects of the nonlin
surface-charging mechanism which leads us to introduce
effective, or running, surface-charging parametera8(L) and
we analyze how the behavior of the surface charges(L) and
the disjoining pressurePd(L) depend onh, a, andm. The
formulas summarizing our findings are Eqs.~19! and ~50!–
~53!. Examples of the solutions to these equations are sh
in Figs. 2 –7 and we now briefly discuss the salient featu
of these results.

In Figs. 2~a! and 2~b!, and we showa8(L) as a function
of L for various values ofa andm, respectively. The effec
tive parametera8(L) controls the strength of the surfac
charging mechanism, and from Eq.~17! and what follows, it
is clear thata8(L)→0 asL→0 which in turn causessMF
ands to vanish also in this limit.

In Figs. 3~a!, 3~b!, and 3~c! we show the dependence o
Pd on L given in Eq.~53! for various values ofh, a, andm,
respectively. From all these figures we see that the chara
istic collapse transition is evident but that its strength is v
sensitive to the parameter values. In particular, from Fig. 3~a!
we see thatPd decreases ash decreases, as we should expe
since the image charges at the surface are repelling the
ions and so reducing the surface charge; this effect can
seen directly in Fig. 6~a!. The effect onPd is due to the
S-dependent term in Eq.~53! which arises because of th
implicit L dependence of the free energy through its dep
dence ona8(L). Note thatsMF(L) is independent ofh as in
this formulation the effect of image charges first comes in
the one-loop level. The dependences ofPd on a andm are
shown in Figs. 3~b! and 3~c! and have the expected trend

0 10 20 30 40 50
L (nm)

0.0

0.1

0.2

0.3

0.4
α’ (L

)

α = 0.2
α = 0.3
α = 0.4
α = 0.5

0 10 20 30 40 50
L (nm)

0.0

0.1

0.2

0.3

0.4

α’ (L
)

m = 0.05 (nm1 )
m = 0.1  (nm1 )
m = 0.2  (nm1 )

(a) (b)

FIG. 2. The dependence ofa8(L) on ~a! a and ~b! the Debye
massm for the values shown.a8(L) controls the strength of the
surface-charging adsorption.
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but again the height of the peak inPd(L) is strongly depen-
dent on the parameters which have been chosen to take
ues that can typically be achieved in experiment. In Fig. 4
show the mean-field and one-loop contributions toPd(L) for
typical parameter valuesh50.3 (nm), a50.5, and m
50.2 (nm21). In Fig. 5 we comparePd(L) for the nonlinear
theory of this paper, given in Eq.~53!, with the linearized
theory from Ref.@24# for these same parameter values. A
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1

)
m = 0.1 (nm

1
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m = 0.2 (nm
1

)

0 10 20 30 40
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(1
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a)
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h = 0.3 (nm)
h = 0.5 (nm)
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P
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a)

α = 0.2
α = 0.3
α = 0.4
α = 0.5

(a) (b)

(c)

FIG. 3. The dependence of the disjoining pressurePd , in units
of (103 pascal!, given in Eq.~53! on ~a! the Debye massm for h
50.3 nm,a50.5, ~b! a for h50.3 nm,m50.2 nm21, and~c! the
surface layer thicknessh for a50.5, m50.2 nm21. The sensitive
dependence ofPd on h shown in~a! is evident as we should expec
since the influence of the image charges increases rapidly ash de-
creases.

0 10 20 30 40 50
L (nm)

1.0

0.0

1.0

2.0

P
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(1
03  P

a)

mean field
one loop
total

FIG. 4. The disjoining pressurePd , in units of (103 pascal!, as
a function ofL given in Eq.~53! showing the mean-field contribu
tion and the one-loop@O(g)# contributions forh50.3 nm,a50.5,
andm50.2 nm21.
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WEAK NONLINEAR SURFACE-CHARGING EFFECTS IN . . . PHYSICAL REVIEW E68, 051104 ~2003!
though the peak inPd occurs in much the same place, it
lower in the nonlinear theory for this value ofh. Since the
peak height is strongly dependent onh, we see that a quan
titative prediction requires a realistic model for the surfac

In Figs. 6~a!, 6~b!, and 6~c! the behavior of the surfac
charges(L) given in Eq.~52! as a function ofL is shown for

0 10 20 30 40
L (nm)

1.0

0.0

1.0

2.0

P
d 

(1
03  P

a)
nonlinear theory
linear theory

FIG. 5. The disjoining pressurePd , in units of (103 pascal! for
the nonlinear theory given in Eq.~53! compared with the linearized
theory from Ref.@24# for h50.3 nm, a50.5, andm50.2 nm21.
Although the peak inPd occurs for much the same value ofL, it is
lower in the nonlinear theory for this value ofh. Since the peak
height is strongly dependent onh, we see that a quantitative predic
tion requires a realistic model for the surface.
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FIG. 6. The dependence of the surface charges in millicou-
lombs from Eq.~50! on ~a! the Debye massm for h50.3 nm,
a50.5, ~b! a for h50.3 nm, m50.2 nm21, and ~c! the surface
layer thicknessh for a50.5,m50.2 nm21. We see thats decreases
with L and from ~a! that this effect is enhanced ash becomes
smaller as we should expect since the image charge repulsion
greater influence. In our models is constrained to vanish asL
→0 since it is proportional tosMF , Eq. ~52!, which vanishes in
this limit as discussed in Sec. III.
05110
.

various values ofh, a, andm, respectively. The behavior o
s(L) is dominated by the behavior of the mean-field surfa
chargesMF(L) to which it is proportional. The importan
fact is that when the nonlinear surface-charging mechan
is incorporated in the model we find thatsMF(L) vanishes as
L→0 since from Eq.~30! it is proportional toa8(L), the
effective strength of the charging mechanism, which va
ishes itself in this limit, Eq.~19!. We see this effect in Fig
6~a! wheres(L) decreases very strongly withL for smallL,
but also note that ash decreases the rate of decrease to z
increases so that forL,1/mD there is a factor of 2 betwee
the values ofs for h50.1 (nm) andh50.5 (nm). However,
this is the region in the neighborhood of the collapse, as
be seen from Fig. 3~a!, and so it is possible that the model
not accurate in this region. The dependences ofs(L) on the
bare charging strengtha and on the Debye massm are
shown in Figs. 6~b! and 6~c! where the trends based on th
above discussion are as expected but, as in the case ofPd the
magnitude ofs(L) is very sensitive to parameter values. T
overall prediction is thats(L) is strongly dependent onL
and vanishes asL→0. The mean-field and one-loop contr
butions, which are the first and second terms in Eq.~50!, are
shown in Fig. 7 for various values ofh and a50.5, m
50.2 (nm21), where the insensitivity ofsMF to h is obvi-
ous, and the dominance of divergence ash→0 for smallL in
the one-loop contribution is very clear.

An important feature of these calculations to note is t
the results are expressed as a series in botha8(L) and g
5mlB with resummations where possible. As already not
the coupling a8(L) is an effective, or running, coupling
since it depends onL, whereasa can be considered as a ba
coupling which describes the strength of the interaction
the surface. Usinga8(L) corresponds to summing an infinit
series ina in perturbation theory in Eq.~18!. This is crucial
for the regionL, l D since the series ina will develop very

s a

0 10 20 30 40
L (nm)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

σ 
(m

C
) h = 0.1 (nm)

h = 0.3 (nm)
h = 0.5 (nm)

mean field

FIG. 7. The surface charges in millicoulombs in Eq.~52! show-
ing the mean-field contributionsMF(L) and the one-loop@O(g)#
contribution given bysMF(L)3gS(mL,mh), whereS(mL,mh) is
defined in Eq. ~51! for values of h shown and a50.5, m
50.2 nm21. The one-loop contribution is negative and has a mi
mum before turning to zero as it must sincea8(L) @Eq. ~19!# and
hencesMF(L) vanishes asL→0.
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large terms as coth(mL/2) becomes large and so is bad
behaved. In contrast, usinga8(L) gives an important contri-
bution to theL dependence of the calculated quantities wh
is well behaved. In addition, we have not expanded the fi
result as a series ina8(L) since the closed forms presente
arise from the evaluation of the field determinant which na
rally corresponds to an infinite sum of one-loop diagram
Such resummations are well known in quantum field the
and renormalization group theory@33#. The couplingg is the
strength of the nonlinear interactions and a diagramm
expansion for perturbation theory generated by the inte
tion terms in the fieldf gives a power series ing. The major
approximation in this current work is to use the free-fie
theory within the bulk. This is because the object was
study the effects of the nonlinear surface-charging mec
nism and we have shown that these effects are indeed st
and it is clear that any approach which omits them or
sumes a constant surface charge will be incorrect. We
conclude that for such finite-size systems characterized
length scaleL we must expect that approximations m
break down and some terms become large asL takes an
ce

.
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extreme value:L→0 in our model. Another example is th
surface charges(L) which physically is non-negative for al
L but in the Gaussian approximation clearly changes sign
L small enough, Eq.~50!, but where an obvious resummatio
of an infinite series of selected tadpole graphs, correspon
to exponentiation, ensures that this physical condition is
violated, Eq.~52!. The resummation of tadpole subgrap
can still be done at higher orders in perturbation theory an
is the aim of work in hand to systematically study how t
perturbative series can be ordered using these ideas.

A consistent control over spurious and artificial infinitie
must await the full perturbation theory. An example is elud
to in Eq. ~42! and what follows. We have indicated how t
control such quantities here to the one-loop level and see
even here the analysis is rather delicate. There are, in p
ciple,O(g) terms from interactions~in the termDS* ) within
the bulk which, as we have shown, vanish asL→` but
contribute finiteL effects toPd ands, but these terms are no
expected to be large. We shall present an analysis of all th
topics in a forthcoming paper@34# in which the full nonlinear
theory and its perturbation expansion will be studied.
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