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Weak nonlinear surface-charging effects in electrolytic films
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A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model
exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation
of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are
then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluc-
tuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer
model for a thin film with Stern layer of thickness For this model we give expressions for the surface charge
o(L) and the disjoining pressufe,(L) and show their dependence on the parameters. The influence of image
charges naturally arises in the formalism, and we show that predictions depend strohghecause of their
effects. In particular, we show that the surface charge vanishes as the film thitkressThe fluctuation
terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is
well known to be negligible compared with the mean-field component for model electrolytic films with no
surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation
leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field
component even for large film thickness.
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[. INTRODUCTION one must resort to a microscopic description of the physics at
the interfaces. Depending on the nature of interface one may
Many situations in colloid, polymer, and interfacial sci- have specific adsorption due to chemical effects which can
ence involve charged objects interacting in electrolyte solube taken into account via the law of mass acfiér 8| or at
tions. In the case of two interacting membranes or soap filma more statistical mechanical level by introducing an external
one encounters the electric double layer. The mean-fielgotential at the surface which models the chemical liaison
theory of such experimental configurations is the Poissoninvolved [9-11]. In addition, there are other forces which
Boltzmann theory 1,2] for which a surface boundary condi- come into play which are not present in the standard
tion must be determined. For example, the surface charge étoisson-Boltzmann approach. These are effects due to fluc-
surface potential can be given, or a relation between the sutuations in the electromagnetic field which can be identified
face charge and surface potential may be specified. Suchveith van der Waals force§12—14. In bulk, the nonzero
relationship arises in a charge-regularized model where thizequency van der Waals forces have little effect on the static
surface-charging mechanism is derived from a microscopi@nic distributions since the relevant frequencies are too large
description of the chemistry and geometry at the interfaceand their contributions can be decoupled from those of zero
Charge-regularized models have the property that, owing tfrequency. However, it was pointed out in REE5] that near
the thermodynamic nature of the charging mechanism, thaterfaces the nonzero frequency van der Waals or dispersion
surface charge changes as the distance between the two storces can be important and depend strongly on the polariz-
faces varies. The variation of the surface charge with thability of the ions involved, and hence are ion specific. The
intersurface distance will also change the effective interaczero frequency van der Waals forces, which correspond to
tion between the surfaces and consequently the disjoininthermal fluctuations in the electrostatic field, do strongly in-
pressure. Within the film, the mean-field Poisson-Boltzmanriluence ionic distributions and so do modify the surface
theory is only sensitive to the electrostatic properties of thecharge. When there are spatial variations in the dielectric
electrolyte; the chemistry and effective sizes of the ions inconstant image charges arigkg]. In the field-theoretic ap-
the system only enter into the description of the surfaceproach adopted in this paper image charges and their effects
charging process. For example, experimgsit shows that are naturally and systematically included by taking into ac-
the disjoining pressure increases with increasing hydratiocount the fluctuations of the electrostatic field.
radius of the counterions in ionic soap films. This effect can In this paper we use field-theoretic techniques to study the
be explained by the fact that as the counterion radius ineffects of nonlinear terms on the surface-charging mecha-
creases the capacity for it to approach the surface and screarism and the disjoining pressure while retaining the free-
the surface charge is reduced. field theory description for the bulk electrostatic fields. This
To take into account bulk surface tensions of electrolytecorresponds to using linear Debye theory in the bulk with
fugacity u but with the fully interacting description of the
sources for the charging mechanism of the surfaces. The ef-
*Email address: dean@irsamc.ups-tlse.fr fect of including nonlinear interactions in the bulk of the film
"Email address: rrh@damtp.cam.ac.uk will be addressed in a forthcoming paper. The model is ap-
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plied to a triple-layer thin film as an idealized model of the h L h
surfaces where there is a Stern layer of thicknessom
which all ions are excluded. Calculations are performed to L
one-loop order in perturbation theory and an important out- ‘

SALT SOLUTION

—
V=

come is that this extension of calculations beyond mean-field
theory allows us to use the model as a paradigm for the
analysis of the e of divergences which arise in the theory.
There are three categories of divergen@:apparent ultra-
violet divergences which can be shown to cancel when
physical renormalization conditions are imposéa); ultra-
violet divergences which are physical and are regulated by |
physical length scales which are typically the sizes of theDebye 0§ o
ions involved; and(c) divergences associated with image Mass |
charges induced by the dependence of the dielectric constamigjeciric

€ on z the coordinate normal to the film. These appear in theconstant %
self-energy contributions near to the surface and are regu-
lated by the Stern layer thicknebsOf these, we discus®)

and(c) in this paper since it can be shown that divergences pig 1. Cross section through a model soap film. The distance of
of type (b), which must arise because the Sine-Gordoncjosest approach of the ions to the surfa@sz=0 andz=L) is
theory is not renormalizable in three dimensions, occur onlyhe effective radius of the ionic species in solution. The dielectric
in graphs at three-loop order and higher. Because divelconstants and Debye masses as a function of the distance perpen-
gences of typéc) are physical the charging mechanism for adicular to the film surface, i.e., as a function of the position on the
realistic film cannot place charges directly on the surface axis are also shown.

because this would correspond to settimg0. However, it

should be emphasized that .the .mean—field.theory is not Sir{hickness[3,10,17—19. The film shown in Fig. 1 consists of
gular ash—0, and we exploit this observation to set up theq parallel surfaces of are, the interior of which is filled
mean-field solution about which the fields are expanded sQ;ith a monovalent electrolyte solution such as NaCl in water
that the effects of field fluctuations can be analyzed. _ with bulk dielectric constané. The exterior of the film is a

.In Sec. Il we descnbe thg field theory model We USE Ngialectric medium of dielectric constaag, for example, air.
this study and how it is applied to the triple-layer thin film 4 perpendicular distance between the two surfaces is de-
system discussed above. In Sec. Il we discuss the mean-fie ted byL +2h. The region of thickness is the Stern layer

solution to the field theory for the thin film for which the from which the largest ions in the system are excluded,fand
nonlinear interactions at the surface determine the sourc

: , ; _ €an be taken to be the radius of the largest ion type in the
terms in the mean-field equation. In Sec. IV we give a de'system which is here chosen to be the arfiarmost physi-
tailed description of the effect of field fluctuations about thecal sys'tems it is the cation with the largest radius due to
mean-field solution using the Schiioger kernel approach hydration). If the radius of the cation in solution is’ and
developed in an earlier papg24]. We give predictions for h’<h, then the cation is excluded from a region of widith

the surface charge(L) and the disjoining pressuf®y(L) as from ihe surface but can be present in the region(h

a function of film thicknesd. and show under reasonable —h'),0] where there are no anions, thus leading to an effec-
assu.mpnons thatr(L)—0 "?‘SHO anql that th_e mean-field tive surface charge in that region. Strictly speaking, just out-
prediction fqr the Iar_geL Fa|l Of Py(L) IS mod|f|ed' by_one- side the film is the surfactant layer which in general will
loop corrections, which like the mean-f|eld contribution aISOhave a different dielectric constant to that of the exterior and
decay as exp{ml) for largeL, wheremis the Debye mass. o aqueous interior. Here for simplicity the presence of the

. ! . e Shonionic surfactant is neglected. A version of this model with
cuss their salient features. In particular, it is clear that thed single surface plus bulk is commonly used to model the

effects of image charges, which arise naturally and systems, face properties of electrolyte solutidiis,20—22. In ex-

atically in our formal_isrr_l as terms in self-energies, areé Veyseriments the thickneds of the film may be varied by ap-
strang and that qual_ltatlve predictions depend sepsmvely 0 lying an external pressure in the cell containing the film and
the value ofh, the thickness of the Stern layer. This demon—itS bulk

strates that a realistic model for the structure of the surface, The grand partition function for this model system may be

and the width of the Stern layer in particular, is necessary fo[expressed as a functional integttle functional integral ap-

a quantitative study. We also present some conclusions iBroach to slab geometries was introduced in R2g])
this section. '

AIR AIR

0 L z

Il. MODEL E:j d[ ¢lexp(S ¢]), ()]

We consider an idealized model of a thin film made with
nonionic soap adapted to the experimental setup used to
measure the disjoining pressure as a function of the filnwhere
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1 which characterizes the scale of the electrostatic interactions,
S p]=- EJ Be(X)(V ¢)?dx then we can approximat® by
(T+L+2h)xA
+2,u,fLXAcos(,8e¢)dx 2=M(h—h’)fLXAc‘?(Z)exp(iBecﬁ)dx
+ fLXA[ 5(2)+ S(L—2)Jexp(i Bed)dx, (2) W(h—h'>fLXA5(Z—'->eXp(iﬂe¢)dX- ®)

wheree is the electron chargd is the area of the film, and Comparinlg with the formula in Eq(2) we see thatu;
B=1KgT. The fugacities of the anions and cations are takeri- #(N—h’). In general actions of the type of EQ) can be
to be equal and denoted Iy and for a monovalent electro- used to describe various surface-charging mechanisms with
lyte their densities in the bulk are also equal and are denotedl® Proviso that the region where the surface charge is local-
by p. The total length in the direction perpendicular to the 1z€d has a width much smaller than the Debye lerigth
film surfaces isT + L + 2h, whereT denotes the total length While this description acts as a motivation for the model it is

external to the film. In the regione [ —h,L +h] the dielec- clear that, in general, there will be specific adsorption for the
tric constant, which is a function only of is given by different species near the air/water interface. To model a spe-

€(2)= e and outside the filme(2) = €. cific adsorption for the cations in the surface regjon(h

The above field-theoretical formulation can be obtained—N’).0] we take a surface cation fugacipy in this region
directly from quantum electrodynamif24] by retaining just ~ Which is greater than the bulk cation fugacjty On shrink-
the electrostatic potential field in the QED Lagrangian andnd the surface region to zero one would then have
coupling it to the distribution of ion charges. Alternatively, it =us(h—h"). In general, we will have thaa’ = ur, where
can be obtained by standard field-theory techniques based 6ris a parameter having the dimensions of length. There is
the Hubbard-Stratonovich transformation for a monovalensome evidence for specific absorption of certain ionic species
Coulomb gas. The formulation takes into account both theéat seemingly chemically neutral interfaces; the famous and
Coulomb interactions between the ions and the zero frecontroversial Jones-Ray dii25] in the surface tension of
quency van der Waals forces due to fluctuations in the elesveak electrolyte solutiongwith interfaces with air can be
trostatic potentia[24]. These zero frequency van der Waals explained by invoking a specific adsorption of anions at the
forces are particularly relevant when there are variations ifinterface[26], although the basic surface exclusion model
the dielectric constants of the system since they naturally aniitroduced in Ref[20] and used here cannot explain nega-
systematically include the effects of image charges. This i¢éive excess surface tensions. Recent experimental evidence
especially the case for aqueous soap films in air wher@oints toward a specific adsorption of hydroxide ions at air/
€l e,~80. The density operators for the cations and aniongvater and oil/water interfacg2]. In what follows we treat

can be shown to be % as an independent variable to account for the more com-
plex charging mechanisms which can occur at the interface.
p=(X)=pexd xieBd(x)]. 3 It is important to note that the fugacity (and hence

u* =ur) is determined by the values of the physical bulk
The last term in Eq(2) represents a highly localized affinity densityp,

for the cations to be at the surfaces 0 andz=L of the
film, and is responsible for the generation of a surface p=u(cospBeq),
charge. There are various mechanisms leading to affinities
for ionic species at interfaces, ranging from chemical affinitywhere the brackets stand for averaging over the bulk parti-
to steric and entropic effects. Here this term arises in thdion function. In mean-field theory or at the zero-loop level
following approximation. Since there can be cations in thethis implies p=p, but this is not true in general and the
region [—(h—h'),0] and the corresponding regid.,L relationship must be calculated taking field interactions into
+(h—h")], there is, in addition to the first two terms of the account. In particular, it is important to note that final results
action Eq.(2), a surface term must be expressed in terms @fvhich is a physically mea-
surable quantity and not in terms pfwhich is a parameter
) in the action tuned to achieve the value @frequired. In
EIMJ ) exp(i fe¢)dx order to calculate quantities to a given loop order we must
[—(h—h"),0]xA L ;
expandu as a series ip using Eq.(2) to the same order to
. obtain a consistent final result.
+'“f[,_ L+(h_h/)]erXm'Be¢)dX' @) In Ref.[24] the field theory with the action of E¢2) was
’ analyzed in the weak-coupling or Debye-¢hel limit which
This is the integral of the density operator given by E3).  is a Gaussian approximation where the action is expanded to
for the cations over the regiorls—(h—h’),0] and[L,L  second order in the fielgp. This amounts to the assumption
+(h—h’)]. These are the regions in the Stern layers whicHhat the mean-field densities of cations and anions through-
may be occupied by the cations but from which the anionsut the film are small enough so thaﬁ8(2)|§<1, wherel g
are excluded. lh—h’<Iy, wherelp is the Debye length is the Bjerrum lengthg=e?B/4mwe. Another approach is to
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solve the full nonlinear mean-field equations and then calcufor the grand partition function. The mean-field Poisson-
late the one-loop correction which gives the effect of fieldBoltzmann equation is obtained from the saddle point of the
fluctuations about this mean-field solutip®8,29. In Ref.  actionS*:

[28] the resulting mean-field solution in the case of fixed

surface charge was ingeniously expressed in terms of special o
functions which allowed an analytic calculation of the one- Sé(X)
loop correction. In our case, however, the fact that the sur-

face charge must be computed self-consistently leads to awvith w substituted byp in the final mean-field results de-
ditional complications and we take a different approach. Weduced from the solution since=p at the zero-loop order.
assume that the Gaussian approximation is valid inside th#/e should emphasize that, as already discussed above, when
film but not at the surface where, because of the increaseerlculating to a given loop order, the mean-field expressions
charge density, the electrostatic interactions will be strongeishould be evaluated with expressed as a seriesgrdeter-

and we retain the full nonlinear surface operators. The resultnined by Eq.(2) to the same order. This is the usual proce-
ing theory can be analyzed as bef¢?d] but with an effec- dure for perturbative loop expansions in field theory and en-
tive L-dependent surface source for the field. The theory isures the removal of nonphysical divergences in the results.
accurate to the same order in perturbation theory as before Taking into account the Gaussian fluctuations about the
but, in addition, now includes nonperturbative surface ef-mean-field solution gives the perturbative correction to one-
fects. The corresponding Debye-¢kel action with nonlin-  loop for which we have

ear surface terms is

S4.=0, ©)

E%eXp(S*Mc])f di¢’]

1
S [h]=— —f 2)(V ¢)2dx
e PO ><exp(E f L ¢'<x>¢'(y>>
1 2 5p(x)5¢(y) | e '
—5|  Bem*pdx+pu’ f [8(2) (10
2 JLxA LXA
- All other terms are treated as interactions to be analyzed by
+o(L— +
S(L=2z)]explifed)dx+2pAL, ® perturbation theory and yield corrections at two-loop and
) . higher order.
wherem(p) = y8mplg=1/p is the bulk Debye massp, is The grand-potential per unit area of filihcan be sepa-
the Debye length, andg is the Bjerrum length defined rated into a mean-field contribution plus the zero frequency
above. van der Waals contribution coming from the fluctuations. We

Note that the term neglected in passing from the full acyrite
tion, Eq.(2), to Eq.(6) to the order ofp* is

J=JMF 4 guaw, (11
2 e4 4 44
As*:f [ﬂe[mz(p)/z— m2()/2] %+ “4—’?"5 dx.  where
LXA !
@) mE_ _ L
Jr=— ES[Q—"C] (12)
Using the effective actio§* as a starting point for a pertur-
bation theory it can be shown that the dimensionless pertu@nd
bative parameter ig=mlg. It can also be shown that in the 1 25
bulk the termA S* only contributes to observables@{g?), vdW_ _
Y © i J Trin . (13
and we thus neglect it in our current one-loop analysis along 2AB Op(x)5(y) o,

with the higher-order terms in the expansion of the cosine.

From the discussion above, the weak-coupling limit cor-The stability of the mean-field solution and validity of the
responds tog=mlg<1l, and the Gaussian approximation one-loop approximation is ensured if the Hessian operator
will be valid throughout the film so long as the local or H=— 52S*/5¢(x) 8¢ (y)|,_ is positive definite.
effective mean-field Debye mas¥(p(z))= \8mp(z)lg does ¢
not become so large that this weak coupling condition is
violated. This condition is B-p(z)lg<1 as stated earlier. We
note that sincep(z)>ppuik, this necessarily requires that ~ The mean-field equation is obtained as usual by looking

Ill. MEAN-FIELD THEORY

87pru|k|g<1- for an imaginary solution to Eq9), ¢.=1i, wherey is real
Proceeding with the approximation scheme describe@nd corresponds to the mean-field electrostatic poteddl
above we have the expression The resulting equation foy is
BV - €V y—m?Beyrt+ w’ Be[ 8(2) + 5(L—2) Jexp( — Bey)
EQJ dl ¢lexp(S*[¢]) (8 -0 (14)
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within the film, and outside the film we have in terms ofa’ (L) rather thane. This is a common phenom-
enon in quantum field theory where the physical expansion
BV - €V y=0. (15 parameter is a running coupling which is an explicit function
This mean-field equation has the form of a standard linear®f @ Physical scale appropriate to the system under study. For

ized Poisson-Boltzmann equation but with nonlinear bound€*ample, in particle physics the scale will be the center-of-
ary terms. mass energy of a scattering process and in critical phenom-

An important fact to note is that in mean-field theory the €na it is the diverging correlation length of the system. Series
limit h,h’ —0 discussed in Sec. Il and implicit in E€L4) is expansions in the effective, running, parameter are more
nonsingular. This is because image charge contributions agable and convergent than in the original bare parameter
first seen in the one-loop self-energies contributions whichvhich parametrizes the action of the theory. Here, as in other
arise from an analysis of the field fluctuations about the socases, the running coupling’ (L) is expressed as an infinite
lution to the mean-field equatiori4) and(15). These con- series in the corresponding bare parametéie can imme-
tributions are discussed in detail in the following section. diately see from Eq(20) why «'(L) is a better expansion

The solution fory is by symmetry only dependent an  parameter. Ad. —«, o’ takes its bulk surface value*
and symmetric about the midplane of the filmeatL/2, and  =lim,_.a’(L). As mentioned previously we are using a
so we choose the solutiogi(z) = C(L)coshim(z—L/2)] in-  Gaussian field theory inside the film and so the mechanism
side the film. Outside the film Eq15 givesdy/dz=0, generating the surface charge cannot be taken to be too
which is the condition of electroneutrality of the mean-field strong, implying thata<1, which givesa*~a. As L de-
solution Wlthlp the f|Im.+|ntegrat|n_g the mean—fl_eld equation creasese’ (L) decreases. However, since the expansion in
betweerz=0" andz=0", and using the condition of elec- gq (20) is in « coth(L/2), the nonlinear terms in this series
troneutrality, we find must be taken into account when varyingndeed, for small

def L one can show that’(L)~—mLIn(L)/2, which tends to
eE|z:0+= —eup’ exd — Bey(0)]. (16)  zero asL tends to zero.
We note that in general surface-charge-regulated models

Defining D(L)=C(L)BecoshmL/2) gives the nonlinear [7]. even if there is an exact solution to the Poisson-
self-consistent equation determinibyto be Boltzmann equatioritor its linearized formin the bulk, one
must determine the surface potential via a transcendental

mL equation relating the surface charge to the surface potential.
D(L):“Cw( 7) exd —D(L)], (17 In general, this equation must be solved numerically by it-
eration[4] or by linearizing the boundary equati¢]. For-

where a=mu*/2u=mr/2 is dimensionless. In the Stern tunately in the case studied here we have an explicit series
layer model a=m(h—h’)/2=(h—h")/2l,. As stated in solution to the boundary equation. The disjoining pressure of
Sec. Il it is whenl;>(h—h’) that the formulation in terms the film Py(L) is the difference between the film and bulk
of a surface charge is valid. In the study of this particularpressures. In the grand canonical ensemble
model we havea<1, which also implies small surface
charges compatible with the use of the quadratic approxima-
tion within the film. Then Eq(17) may be formally solved as dJ(L)
a power series inx coth(nl/2) using standard series inver- Py(L)=P(L) = Ppu=— T+ lim J(L)/L, (2D
sion techniques from complex analysis. We find that

mL
«a cot 7

It is useful for what follows to define the running variable

1 exd — 0
a’(L)=D<L>tanr(m7L):mM+ exgl ~ fei0)]

L—oe

"(n+1)"t

' where J is the film grand-potential per unit area. We can
n!

decompose the disjoining pressure into a contribution com-
(18 ing from the mean-field solution and a contribution coming
from the field fluctuations which corresponds to the zero
frequency van der Waals interaction,

D(L)=acot?(m—L) > (—1)"
2 n=0

2u MF
aJ¥" (L
(19 PQAF(L)=—%+ lim JMF(L)/L, (22
L—o
From Eq.(18) we then have
- mL\]"(n+1)""? aw
’ — _ n - - (?JU L
@ (L=a2 (1) “COI*( 2 - 0 P;;dW(L):—a—L()Him JWLL, (23

L—oe

We can regardy’ (L) as a variable encoding the effective

fugacity which controls the surface-charging mechanism.

Many observable quantities are most appropriately expresseifter some straightforward but laborios algebra we find that
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D2(L) which, in terms of the mean-field surface charge, reads
MF —
cosﬁ(—) a2 (L)
2 phMF—_ME (32)
) mL
D2(L) Zesmhz(7>
=pkeT—— (24)
COSH(j For the linearized Poisson-Boltzmann equation with constant

surface charge . one finds[8,27]
where the last line above is the mean-field result with

evaluated at zero-loop order for consistency. The zero-loop e ol
mean-field value of the density within the film is given by Pe =m0 (33
2e sinhz< —)
pmr(X)=2p cosheBy(x)], (25 2

and in the linearized theory within the film this becomes  Hence, at the mean-field level, fitting the disjoining pressure
> 5 5 at each value of with anL-dependentr. will reproduce the
Pmr(X)=2p+ p€ B(x)”. (260 pehavior ofoye(L) in the current theory. This result is also
true for full nonlinear mean-field theory and is not dependent

At the midplanez=L/2 of the film one has on the quadratic field approximation in the bulk used here.

L D*(L)
puir| 2= 5 | = pouk=p T (27) IV. FLUCTUATION EFFECTS
COSH(T) In this section we give the expression for the surface

chargeo(L) and the disjoining pressurBy(L) correct to

The midplane pressure formula, 2], for Poisson-Boltzmann one loop and shall explicitly explain théleoof divergences.
theories with fixed surface charges or potentials, relates th@é/e demonstrate that the ultraviolet divergences arising at
disjoining pressure to the midplane mean-field density by one loop cancel when the physical renormalization condition
determining the density is imposed, and that the diver-
gences as—0 appearing in surface self-energy graphs are
physical and correspond to image charge effects.

Evaluating the fluctuations about our mean-field solution
In fact, in theories of the type considered here with externayjields
potentials at or near the film surface, one can show quite

Py =keT — Pbulk|- (28)

L
PVF| 275

generally that the midplane formula holds generically as long 1 25,
as these external potentials are zero in a finite interval con—_f xdy—H &' ()P (y)
taining the midplane=L/2 (and hence when the two sur- 09" (x)5¢'(y) o

face potentials do not overlapOne can see directly, com-

paring Eqs(24) and(28) with the linearized approximation, 1 o 1 -

Eq. (27), that the midplane formula is respected here. ) (TH)XA'BG(Z)(Vd’ )7dx—3 LXAEem ¢ dx
The mean-field, zero-loop surface charggr(L) may be

written in terms ofa’ (L) defined in Eq.(19). We have 1 ’
- E,Bema’(L)f [6(z)+6(L—2)]¢'“dx, (349
LXA

J
UMF(L):eM*a +BIvE, (29
M wherea’(L) is defined in Eq(19).
which gives The main difference in Eq34) from the pure Gaussian
theory of Ref.[24] is that the surface term’(L) is now a
2pea’ (L) function of the film thickness, whereas in the pure Gaussian
oue(L)= — (300  theory itis a constant. The fluctuation term, E84), may be

evaluated using functional techniquig=t,28,30—-32as it is
a functional determinant, or by path integral technig2s.
Jn the calculation of this functional determinant, it is easily
verified that the eigenvalues of the Hessian operbtare
indeed positive, thus ensuring the stability of the mean-field
solution and hence the validity of the one-loop approxima-

As remarked in the preceding section it is clear #&tl) is
the appropriate expansion parameter for physical obser
ables.

The mean-field disjoining pressure in termsagf(L) is

’2 tion.
PMF=pkgT (L) , (32) Using the results of Ref24] we find that the terms de-
sint? m_L pending explicitly ona’ and L that will contribute to the
2 disjoining pressure and the surface charge are
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B\]UdW(L,C!,) m3
) BPpuk= — BIpu=2p— pye (39
m

= BILIVL + ZJ dkkIn[B(km)k+a'(L)+ VkZ+1]

In addition, the above results can be used to show that the

, 2
N m_ZJ' dkkinl 1— B(kmk+a'(L)—Vk*+1 term AS*, defined by Eq(7) and which is neglected in our
4 B(km)k+a'(L)+ Vk?+1 theory, isO(g?) in the bulk as stated previously.

In the field-theoretic formulation used here the surface
charge(on one surfaceper unit areag, is given by

X exp(—2Lmyk?+1) |, (35

where o=eun’(exgiefp(z=0)]). (40)

1+Aexp—2ph) (36)  From this expression it is clear that=0 since we take

1-Aexp—2ph)’ ew* >0 in what follows. However, for the purposes of this
paper and to the order of accuracy of the present treatment

with A= (eo—€)/(€o+ €). The termpJpg in Eq.(35) isthe  we expand this operator to quadratic order and use the ap-

van der Waals contribution to the bulk grand-potential perproximation

unit volume and is given by

B(p)=

m? =eu*exd —eBy(z=0)](1+ieB¢'(z=0
nggl\l/(v:“_f dkk(VKEFT—K). 37 o=eu’exd—eBy(z=0)) B¢’ (z=0)
" ~3€°8%4'%(2=0)), (42)
The mean-field contribution to the bulk grand-potential

per unit volume is simply3Jj; = — 2 since the mean-field \yhere the averagé --) in the above equation is over the
solution in the bulk is just=0; there are no surfaces to set flyctuations¢’. Since the one-loop action i’ is quadratic,

up a mean-field potential. At this point we may not replace it follows that our result foro in this approximation will be

by p because we need to work to one loop for consistencythe first terms in an exponential series which can be imme-
The total bulk grand-potential per unit volume is thus givendiately reexponentiated to give a result that is manifestly

by non-negative. Where this approximation breaks down can
then be easily inferred from this fact and we shall remark on
Blog= —2u+ m_zf dkk( VK2 1—K) this later in the section. However, the aim of this paper is to

bulk KT 4w demonstrate how observables can be calculated consistently

to one loop and how all divergences can be accounted for

m? 1 2 m* and their role understood; this approximation is sufficient for
24 127 * 877Am +O A ) this objective.
A consequence of the one-loop actionghbeing of qua-
=_ 2M_g2_p 1— %) , (39) dratic form is that the average of the term linearsihin Eq.
3 2m (41) is zero and we may then write

where A is a momentum space cutoff corresponding to a

short distance cutofa~1/A, and g=m38mp=mlg. We 2uea’ (L) ea’(L) 9BIv4W
see that indeed the expansion is in the dimensionless cou- 0= m i L
pling g as asserted in Sec. Il. The bulk density of electrolyte de’ (L)
is given by

|a’=0+o(a,2)1

(42

mé 1

J _ *
2p= —#@B\Jbulk: 20+ o @Amz, where we have used that=mu’ /2 and where we have

kept only the leading-order behavior of the surface charge in
o'. We note that the first term in Ed42) is simply the

which can be written as mean-field contributiorry. The next order terms can be
calculated and are finite though one needs to eliminate cer-
w=2p, Z=1- 9( 1- é) tain artificial divergenceg34]. The formula, Eq(42), gives
' 2 the surface charge in terms of the conjugate variableNe

note that the first term on the right-hand side of Ep) is
From its definition in Sec. Il we then also have, to this ordersimply the mean-field contribution to the surface chargg

in g, that u} =Zp?% . but we do not replace: by p since u must be expanded in
Substituting this result into E¢38) gives the well-known terms ofp to one-loop order for consistency. ™(«a') we
Debye expression for the bulk pressure obtain
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2ea’(L) m® kdk m3 D_(k,m)Vk®+1
Ly=—— | p—o— | =———+-—| kdk O(a'?),
o) m K 87J D+(k,m)+47J D (k,m)[D.(k,m)?exp2Lmyk?+1)—D_(k,m)?] +0(a™)
(43

where D . (k,m)=kB(km) = JKZ+ 1. There is, however, a ergy related to image charge effects is still calculable in our
divergence in the first integral term in E3). This term  formalism from self-energy terms evaluated in the region
corresponds to the van der Waals contribution to the charg@here e varies strongly. Whem\=0 no such divergence is
of a bulk surfaceg=lim,_.o. This divergence can be present and(km)=1 leading to the simple formula
regularized by choosing the fugacigy to give the desired
bulk electrolyte density correct at one-loop ordeias al-

luded to previously We define Tulk= ( 1_g ome(©). (47)
_ 1 _ i We notice that from Eq(39) that, to this order, this equation
I'= | kdk (44) .
kB(km)+ Vk?+1 2k may be written as
and then BPpukea*
a'bulk:uT- (48

2ea* ( m?3 mzA)

Opulk= "

= (45)

In the absence of dielectric discontinuitigsvhen e
=¢p), from Eq. (47) we see that the effect of electrostatic
interactions is to reduce the surface charge from the value it
would have had without interactions. This is because the
excess anions left in the bulk pull the cationic surface charge
into the bulk. The case wher&>0 (i.e., e;>¢€) leads to
B(km)=1 for all k and, examining the integrand in the for-
mula definingl’, we find thatl’<0 and hence that positivk
2ea* m m increases the surface charge above that of the&a$e This
Obulk™ T( r ) : (46) is to be expected physically as the image charges in this case
attract the ions toward the medium of higher dielectric con-
stant[16]. In the case wherbm<1 we may evaluate the
integral definingl” since the leading divergence hsn—0
gomes from the largk integration. We find

where A is the ultraviolet cutoff introduced in the bulk cal-
culation above. Note that for weak chargiaj~«. Hence in
terms of the physical variable we obtain the divergence-
free formula foropy,

P 167 87

We remark here that in the cae#0, if the Stern layer
thicknessh is taken to zero, then the terii in Eq. (46)
diverges. It is clear however that one cannot have a surfa
charge exactly at the interface between two media of differ-

ent dielectric constants due to the presence of arbitrarily g oA

close image charges which would lead to an infinite energy Ubulk:(l— 5" m) ome(®). (49
cost. The divergence it as h—0 in Eq. (46) is thus a

physical divergence and any model using a surface charg

must place this surface charge away from a discontinuity inEggin' we scfeehthat f(f)A>O ;A<O) t?ﬁre Is ﬁm enhanc&ement
the dielectric constank. As emphasized in Sec. lll, there is (reduction of the surface charge. This enhancemeatluc-

no divergence ab—0 in mean-field theory and so the result tion) can be physically attributed to the presence of image
that no charge can be situated precisely at the surface cann arges. ,

be deduced from the mean-field solution but rather arises F_mally theL dependence of the surface chargégn’)
through well-understood image charge effects first arising aft 9iven by

one-loop order. Of course, if the changesiis not abrupt but

takes a smooth functional form, then this statement will be o(L)=oye(L)[1+g2(mL,mh)], (50)
moderated accordingly. However, in such more complicated,

and perhaps more realistic circumstances, the potential emvhere

D_(k,m)Vk*+1

D, (k,m)[D(k,m)?2exp2Lmyk’>+1)—D_(k,m)?]’

1
2(mL,mh)=—§—F+2f kdk (51)
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where D (k,m)=kB(km) = \k?+1. As remarked earlier intermediate stages of the calculation can, as in the case of
the surface charge must be non-negative because in otlte surface charge, be shown to cancel in the final result. The
model the expectation value of the charge operator given imeader should note that we have used the smatixpansion

Eqg. (40 is the exponential of a function ofp(L,h). Our in Eq. (53) as with the surface-charge calculation. However
approximation has considered so far the quadratic expansighe terma’(L)coth(ml/2) cannot be expanded for smhlhas

of this operator but we can easily now infer the full expo-it diverges ad —0.

nential result from these last two equations to be The first term in Eq(53) is simply the mean-field contri-
S(mLmh) bution toPy, the secondin the same brackgts the contri-
o(L)=our(L)e? o (52 pution coming from the dependence 8" on L via theL

dependence oft’. The last term is a form of screened zero
equency van der Waals contribution. In the absence of elec-
olyte we find that this last term gives a_#/Casimir attrac-
tion across the film. This can be seen by making the change
of variablesp=km in the expression fof in Eq. (54) and
then taking the limitm— 0. Clearly wherm=0 we see that
«a is also zero since there is no surface charging when there is
o electrolyte, and the only length scale in the systefn is

In the presence of electrolyte this interaction is screened

To replace our result by the exponentiated expression is t
perform a selective resummation of higher-order graphs irﬂr
the expansion fowr which respects the physical constraint
that o is non-negative. This exponentiation is also clearly
consistent at the level of accuracy of the present one-loo
approach as the terms introduced are of ogferindeed, if

one did not use the expansion of the exponential as done i
Eq. (41), but rather calculated the expectation valueogof

using the Gaussian form of the action of the fluctuaticbt’j,s [14] and decays exponentially as ex@mL), which is twice

we would C'ef?“'Y recover the same formula. The resuit in Eq'as quick as the mean-field contribution to the disjoining pres-
(49) can be similarly exponentiated. We remark that COImeC— o \which decays as exp(L) for largeL. However in the
tions from interactions within the film bulk,which have beentheo resented here. the fluctuation éﬁects contribute an
omitted in this model, will give a multiplicative factor of the y P '

> additional term which decays also as expiL) and hence
form 1+ag™+ .. , the fluctuations modify the long distance behavioPgf We
Becausea’'(L)—0 asL—0, we find thatoyg, and :

hence the surface charae vanishes as the film becomes note that in theories with a fixed surface charge, the long-
i L . 95 range component of the disjoining pressure is not altered at
thin. This is a physical result as clearly two surface charges o
one-loop level. The renormalization of the long-range com-

lying on each other will have an infinite electrostatic energyponent of the disjoining pressure, as demonstrated here, is

and this situation will be thermodynamically suppressed:. o g ) X
This vanishing of the surface charge las+0 is not picked specific to charge-regularized models. The strength and sign

up by a purely Gaussian theofg4] of this long-range modification ofPy is controlled by
As previously stated the total disjoining pressure is com-gigrqne L(,jrgvr;?s{tigﬁf?feﬁqar '(rﬂ)]E?f.}l])it;vmcegnc_%reﬂge\,;Tf,eerpffettﬁg
posed of a mean-field contribution and a contribution comin | X p h h : h ) h
from the fluctuations. We find that the total of these two uctuation effects en an((_ee_ducet e surface charge, then
the long-range value d? is increaseddecreasexdfrom its

terms gives mean-field value. The Casimir term is, however, always at-
2 tractive.
L . .
pd(L):L() 1429 >(mL,mh) _ It should be remarked at this stage that to this order,
Zesinhz(m—l_) 1+a’(L)cotr< m_L) 0O(Qg), there will beL-dependent contributions from the non-
I 2 Gaussian interaction term in’4. These contributions can be

2
£2(k shown to vanish as— o but their effect for finiteL must be
—4gpkBT( f dkk\/m) (2) (53 calculated. However, such a calculation requires the appara-
1-f5(k)’ tus for the general perturbation theory which we shall present

in a forthcoming papel34].
where g papef34]

kB(km)+a'(L)— \/m V. DISCUSSION AND CONCLUSION

B kB(km)+a’(L)+ \/mexp( Lmvk®+1). We have systematically developed a theory for a thin film
(54)  Wwith a full nonlinear surface-charging mechanism while re-
taining the free-field theory description for the bulk electro-
In order to simplify the calculation in terms of quantities static fields. This corresponds to using linear Debye theory in
already computed we have simply used the decompositionthe bulk with fugacityu but with the fully interacting de-
scription of the sources for the charging mechanism of the
9 [dJ da’ 4 surfaces. We have applied the theory to a model consisting of
aL  \aL ,+ ER (59 5 triple-layer system, shown in Fig. 1, in which there is ad-
“ sorption of cations onto the surface modeled by a surface
where first partial derivative is computed at constahtThe ~ fugacity 4% and encoded in the dimensionless surface ab-
second term may be written in terms of the mean field andgorption strength parameter=mu%/2u. At the surface
one-loop surface charges,r and o using Eq.(42). Also in  there is a Stern layer of thicknek$ from which all ions are
the derivation of this formula the divergences which arise aexcluded, and the film is of thickness The dielectric con-

f(k)
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FIG. 2. The dependence of (L) on (a) « and(b) the Debye
massm for the values showne'(L) controls the strength of the
surface-charging adsorption. of ToomIgim)

— — m=02(m")

stants in what follows will be those for air/water systems
where e~80¢, in the film and ¢y, outside the film. This

model for a real surface is too simple but it encodes the
important feature that the thermodynamic properties of the
film are very strongly dependent on the detailed nature of the
surface and its properties. This is due to two features: the
charging mechanism which allows the surface charge to re-
main in equilibrium with the interior charges and the effect S ) )
of image charges due to the discontinuity in the dielectric = F!G- 3. The dependence of the disjoining pressge in units
constant at the surface. First, we determine the mean-fielff (10° pascal given in Eq.(53) on (a) the Debye masn for h
solution ¢(z) using the nonlinear surface operators as the_ 0:3 "M @=0.5, (b) a for h=0.3 nm,m=0.2 nm~, and(c) the

ea . _ _ 1 o
source and then we use the Salinger kernel approach to Surface layer thickness for a=0.5, m=0.2 nm =, The sensitive

. . R dependence d?4 onh shown in(a) is evident as we should expect
calculate the partition function as an expansiorwirand g

. . .. since the influence of the image charges increases rapidtydas
=mlg, wherelg is the Bjerrum length. Much of the details g g P

of this approach have been discussed in an earlier pager creases.

In this paper, we concentrate on the effects of the nonlinear ) ) _

surface-charging mechanism which leads us to introduce aPut again the height of the peak (L) is strongly depen-
effective, or running, surface-charging parametéfL) and ~ dent on the parameters which have been chosen to take val-
we analyze how the behavior of the surface chargle) and ~ Ues that can typically be achieved in experiment. In Fig. 4 we
the disjoining pressur®4(L) depend orh, «, andm. The shqw the mean-field and one-loop contribution®tgL ) for
formulas summarizing our findings are E¢g9) and (50—  typical parameter valuedh=0.3 (nm), «=0.5, and m

(53). Examples of the solutions to these equations are showit 0-2 (nm *). In Fig. 5 we compar@q(L) for the nonlinear

in Figs. 2 —7 and we now briefly discuss the salient featuregheory of this paper, given in Eq53), with the linearized

P, (10° Pa)

of these results. theory from Ref[24] for these same parameter values. Al-
In Figs. 2a) and 2b), and we show'(L) as a function
of L for various values ofx andm, respectively. The effec- 20

tive parametera’ (L) controls the strength of the surface-
charging mechanism, and from EG.7) and what follows, it
is clear thate’(L)—0 asL—0 which in turn causes g —— mean field
and o to vanish also in this limit. A T oneloop |
In Figs. 3a), 3(b), and 3c) we show the dependence of Lo

P4 onL given in Eq.(53) for various values oh, «, andm,
respectively. From all these figures we see that the character-
istic collapse transition is evident but that its strength is very
sensitive to the parameter values. In particular, from Fig. 3 00 -
we see thaP4 decreases dsdecreases, as we should expect,
since the image charges at the surface are repelling the cat-
ions and so reducing the surface charge; this effect can be

P, (10° Pa)

seen directly in Fig. @. The effect onP4 is due to the 10

>-dependent term in Eq53) which arises because of the 0 10 20 80 40 50
implicit L dependence of the free energy through its depen- Lm

dence omx’(L). Note thatoy (L) is independent ofi as in FIG. 4. The disjoining pressur@y, in units of (1 pascal, as

this formulation the effect of image charges first comes in ak function ofL given in Eq.(53) showing the mean-field contribu-
the one-loop level. The dependencesPgfon @ andmare  tion and the one-loopO(g)] contributions for=0.3 nm, «=0.5,
shown in Figs. &) and 3c) and have the expected trends, andm=0.2 nm 2.
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/ \ nonlinear theory
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FIG. 5. The disjoining pressuiy, in units of (16 pascal for
the nonlinear theory given in E¢563) compared with the linearized
theory from Ref.[24] for h=0.3 nm, @=0.5, andm=0.2 nm 1.
Although the peak ifP4 occurs for much the same value lofit is
lower in the nonlinear theory for this value bf Since the peak
height is strongly dependent ¢nwe see that a quantitative predic-
tion requires a realistic model for the surface.

though the peak P4 occurs in much the same place, it is
lower in the nonlinear theory for this value bf Since the
peak height is strongly dependent bnwe see that a quan-
titative prediction requires a realistic model for the surface.
In Figs. Ga), 6(b), and &c) the behavior of the surface
chargeo(L) given in Eq.(52) as a function ot is shown for

15 15

1.0
10

s
05

o (mC)
o (mC)

0.0

0.5

10

10 30 40 20

g (mC)

FIG. 6. The dependence of the surface chasge millicou-
lombs from Eq.(50) on (a) the Debye massn for h=0.3 nm,
@=0.5, (b) « for h=0.3 nm, m=0.2 nm'%, and (c) the surface
layer thicknes# for «=0.5,m=0.2 nm L. We see thatr decreases
with L and from (a) that this effect is enhanced dsbecomes

PHYSICAL REVIEW E8, 051104 (2003

2.0
15 ] 4
mean field
10
G —— h=0.1(nm)
E 05} ---- h=0.3(m) ]
o ——-h=0.5(nm)
0.0 - 1
05

lO L L L
20

L (nm)

40

FIG. 7. The surface chargein millicoulombs in Eq.(52) show-
ing the mean-field contributioory;(L) and the one-loopO(g)]
contribution given byoy (L) X g3 (mL,mh), whereX (mL,mh) is
defined in Eq.(51) for values of h shown and a=0.5, m
=0.2 nm 1. The one-loop contribution is negative and has a mini-
mum before turning to zero as it must sine&(L) [Eq. (19)] and
henceoy (L) vanishes as —0.

various values oh, «, andm, respectively. The behavior of
o(L) is dominated by the behavior of the mean-field surface
chargeo (L) to which it is proportional. The important
fact is that when the nonlinear surface-charging mechanism
is incorporated in the model we find tha,-(L) vanishes as
L—0 since from Eq.(30) it is proportional toa’(L), the
effective strength of the charging mechanism, which van-
ishes itself in this limit, Eq(19). We see this effect in Fig.
6(a) whereo (L) decreases very strongly withfor smallL,

but also note that als decreases the rate of decrease to zero
increases so that fdr<1/mp there is a factor of 2 between
the values ofr for h=0.1 (nm) anch=0.5 (nm). However,
this is the region in the neighborhood of the collapse, as can
be seen from Fig. (@), and so it is possible that the model is
not accurate in this region. The dependences(@f) on the
bare charging strengtlx and on the Debye mass are
shown in Figs. &) and Gc) where the trends based on the
above discussion are as expected but, as in the cd3gtbk
magnitude ofr(L) is very sensitive to parameter values. The
overall prediction is thatr(L) is strongly dependent oh
and vanishes as—0. The mean-field and one-loop contri-
butions, which are the first and second terms in &G), are
shown in Fig. 7 for various values di and a=0.5, m
=0.2 (nm %), where the insensitivity ofryr to h is obvi-
ous, and the dominance of divergencéhas0 for smallL in

the one-loop contribution is very clear.

An important feature of these calculations to note is that
the results are expressed as a series in d{L) and g
=mlg with resummations where possible. As already noted,
the couplinga’(L) is an effective, or running, coupling
since it depends oh, whereasy can be considered as a bare

smaller as we should expect since the image charge repulsion has@Upling which describes the strength of the interaction at

greater influence. In our modet is constrained to vanish ds
—0 since it is proportional terye, Eg. (52), which vanishes in
this limit as discussed in Sec. Ill.

the surface. Using’ (L) corresponds to summing an infinite
series ina in perturbation theory in Eq18). This is crucial
for the regionL <l since the series ia will develop very

051104-11



D. S. DEAN AND R. R. HORGAN PHYSICAL REVIEW EB8, 051104 (2003

large terms as coth{l/2) becomes large and so is badly extreme valueL—0 in our model. Another example is the
behaved. In contrast, using (L) gives an important contri- surface charge-(L) which physically is non-negative for all
bution to theL. dependence of the calculated quantities whichL but in the Gaussian approximation clearly changes sign for
is well behaved. In addition, we have not expanded the final. small enough, Eq50), but where an obvious resummation
result as a series in’ (L) since the closed forms presented of an infinite series of selected tadpole graphs, corresponding
arise from the evaluation of the field determinant which natuto exponentiation, ensures that this physical condition is not
rally corresponds to an infinite sum of one-loop diagramsviolated, Eq.(52). The resummation of tadpole subgraphs
Such resummations are well known in quantum field theorycan still be done at higher orders in perturbation theory and it

and renormalization group theof$3]. The couplingg is the

is the aim of work in hand to systematically study how the

strength of the nonlinear interactions and a diagrammatiperturbative series can be ordered using these ideas.
expansion for perturbation theory generated by the interac- A consistent control over spurious and artificial infinities

tion terms in the fieldp gives a power series i The major

must await the full perturbation theory. An example is eluded

approximation in this current work is to use the free-fieldto in Eq. (42) and what follows. We have indicated how to
theory within the bulk. This is because the object was tocontrol such quantities here to the one-loop level and see that
study the effects of the nonlinear surface-charging mechaeven here the analysis is rather delicate. There are, in prin-
nism and we have shown that these effects are indeed stromiple, O(g) terms from interactionén the termA S*) within

and it is clear that any approach which omits them or asthe bulk which, as we have shown, vanish las>e but
sumes a constant surface charge will be incorrect. We alscontribute finitel effects toP4 anda, but these terms are not
conclude that for such finite-size systems characterized by @xpected to be large. We shall present an analysis of all these
length scaleL we must expect that approximations may topics in a forthcoming pap¢B4] in which the full nonlinear

break down and some terms become largel askes an

theory and its perturbation expansion will be studied.
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